

Welcome to hpman’s documentation!

[image: hpman logo]
 [https://github.com/megvii-research/hpman/blob/master/assets/hpman-logo.png]

hpman (超参侠): The uncompromising hyperparameter manager.

[image: CircleCI]
 [https://app.circleci.com/pipelines/github/megvii-research/hpman][image: Docs]
 [https://hpman.readthedocs.io/en/latest/][image: codecov]
 [https://codecov.io/gh/megvii-research/hpman]hpman is a hyperparameter manager (HPM) library that truly makes sense.
It enables a Distributed-Centralized HPM experience in deep learning
experiments. You can define hyperparameters anywhere, but manage them as a
whole.

hpman is intended to be used as a basic building block for downstream tools, such as
command-line interface, IDE integration, experiment management system, etc.

hpman supports Python version greater equal than 3.5.

Example

lib.py:

File: lib.py
from hpman.m import _

def add():
 return _("a", 0) + _("b", 0)

def mult():
 return _("a") * _("b")

main.py:

#!/usr/bin/env python3
import os
import argparse

from hpman.m import _

import lib

def main():
 basedir = os.path.dirname(os.path.realpath(__file__))
 _.parse_file(basedir)

 parser = argparse.ArgumentParser()
 parser.add_argument("-a", default=_.get_value("a"), type=int)
 parser.add_argument("-b", default=_.get_value("b"), type=int)
 args = parser.parse_args()

 _.set_value("a", args.a)
 _.set_value("b", args.b)

 print("a = {}".format(_.get_value("a")))
 print("b = {}".format(_.get_value("b")))
 print("lib.add() = {}".format(lib.add()))
 print("lib.mult() = {}".format(lib.mult()))

if __name__ == "__main__":
 main()

Results:

$./main.py
a = 0
b = 0
lib.add() = 0
lib.mult() = 0

$./main.py -a 2 -b 3
a = 2
b = 3
lib.add() = 5
lib.mult() = 6

The core library is designed as a backend for hyperparameter data manipulation,
rather than an end-to-end solution. It is highly recommend to start with a
better frontend:

	CLI frontend: hpargparse [https://github.com/megvii-research/hpargparse]

Installation

python3 -m pip install hpman

Story

Managing ever-changing hyperparameters is a pain in the a**.
From the practice of performing an enormous amount of deep learning experiments,
we found two existing hyperparameter managing patterns of the utmost
prevalence.

Centralized HPM

We call the first type “centralized HPM”. It follows the way of
configuration management in traditional software, regardless of using a python
file or json or yaml or whatever that can store some key-value mapping (may
remind you of settings.ini, nginx.conf, config.yaml etc.):

File: config.py
BATCH_SIZE = 256
NUM_EPOCH = 120
LEARNING_RATE = 1e-1
WEIGHT_DECAY = 4e-5
OPTIMIZER = 'SGD'
LR_DECAY_EPOCHS = [30, 60, 90]
HIDDEN_CHANNELS = 128
NUM_LAYERS = 5
INPUT_CHANNELS = 784
OUTPUT_CHANNELS = 10

File: model.py
from torch import nn
import config

def build_model():
 model = nn.Sequential()
 model.add_module('stem',nn.Sequential(nn.Linear(config.INPUT_CHANNELS, config.HIDDEN_CHANNELS),
 nn.BatchNorm1d(config.HIDDEN_CHANNELS),
 nn.ReLU()))
 for i in range(config.NUM_LAYERS - 1):
 model.add_module(f'layer{i}', nn.Sequential(nn.Linear(config.HIDDEN_CHANNELS, config.HIDDEN_CHANNELS),
 nn.BatchNorm1d(config.HIDDEN_CHANNELS),
 nn.ReLU()))
 model.add_module('fc', nn.Linear(config.HIDDEN_CHANNELS, config.OUTPUT_CHANNELS))
 return model

This way of manaing hyperparameters is widely seen in machine learning
libraries, e.g., xgboost, whose hyperparameters are fairly stable compare than
that in deep learning research.

However …

However, it is quite common for researchers to add some hyperparameters at
their inspiration (e.g., suddenly come up with a “Temperature” parameter in
softmax.). They found pleasure in tweaking the hyperparameters, but quickly
abandon it if the experiment goes wrong. These acts are called Non-Recurring
Engineering (NRE) [https://en.wikipedia.org/wiki/Non-recurring_engineering].

In these cases, the “centralized HPM” reveals obvious drawbacks:

	Whenever you need to introduce a new hyperparameter, you must kind of
“declare” it in the configuration file, while using it in some
deeply-nested easy-to-forget files.

	Whenever you need to abandon an existing hyperparameter, you must not only
remove all the appearances of that hyperparameter in some deeply-nested
easy-to-forget files, but also remove it in the centralized configuration
file.

	There’s a “Heisenberg uncertainty principle” on hyperparameters: you cannot
know both what and where the hyperparameters are at the same time. The
context around where the hyperparameter is used conveys valuable information
of the precise use-case of that hyperparameter. You can either look it up
in the code, or the centralized config file.

These drawbacks essentially require the user to maintain a distributed data
structure, which not only induces great mental burden doing experiments,
but also be error-prone to bugs.

Distributed HPM

So researchers come to another solution: forget about config files; define and
use whatever hyperparameters whenever you need, anywhere in the project. We
call this “Distributed HPM”. However, this is hardly called “management”; it
is more like anarchism: no management is the best management. It makes adding a
hyperparameter cheap: let yourself free and do whatever you want.

Let it go, let it go

from torch import nn

def build_model():
 hidden_channels = 128 # <-- hyperparameter
 model=nn.Sequential()
 model.add_module('stem',nn.Sequential(nn.Linear(784, hidden_channels), # <-- hyperparameter
 nn.BatchNorm1d(hidden_channels),
 nn.ReLU()))
 for i in range(4):
 model.add_module(f'layer{i}', nn.Sequential(nn.Linear(hidden_channels, hidden_channels),
 nn.BatchNorm1d(hidden_channels),
 nn.ReLU()))
 model.add_module('fc',nn.Linear(hidden_channels, 10)) # <-- hyperparameter
 return model

However, barbaric growth of hyperparameters of different names in different
places without governance would soon run into a disaster in knowledge sharing,
communication, reproduction, and engineering. Nobody knows what happened, when
did it happen, and nobody knows how to know easily. You know nothing unless
you read and diff through all the source codes.

You know nothing, Jon Snow.

咱也不知道，咱也不敢问呀

Distributed-Centralized HPM

Now we have two ways of managing hyperparameters: one is good for engineering
but inconvenient for researchers, another one is convenient for researchers,
but bad for engineering.

We are uncompromising. We did not want to decide between these two
choices; we want the best of both worlds.

Only children make choices, adults want them all.

小孩子才做选择，大人全都要

After some trial and error, we came up with a design like this:

main.py

#!/usr/bin/env python3

from hpman.m import _
import hpargparse

import argparse

def func():
 weight_decay = _("weight_decay", 1e-5)
 print("weight decay is {}".format(weight_decay))

def main():
 parser = argparse.ArgumentParser()
 _.parse_file(__file__)
 hpargparse.bind(parser, _)
 parser.parse_args()

 func()

if __name__ == "__main__":
 main()

and you can:

$./main.py
weight decay is 1e-05
$./main.py --weight-decay 1e-4
weight decay is 0.0001
$./main.py --weight-decay 1e-4 --hp-list
weight_decay: 0.0001
$./main.py --weight-decay 1e-4 --hp-list detail
All hyperparameters:
 ['weight_decay']
Details:
+--------------+--------+---------+--+
| name | type | value | details |
+==============+========+=========+==+
weight_decay	float	0.0001	occurrence[0]:
			./main.py:10
			5:
			6: import argparse
			7:
			8:
			9: def func():
			==> 10: weight_decay = _("weight_decay", 1e-5)
			11: print("weight decay is {}".format(weight_decay))
			12:
			13:
			14: def main():
			15: parser = argparse.ArgumentParser()
+--------------+--------+---------+--+
$./main.py -h
usage: main.py [-h] [--weight-decay WEIGHT_DECAY] [--hp-save HP_SAVE]
 [--hp-load HP_LOAD] [--hp-list [{detail,yaml}]]
 [--hp-serial-format {auto,yaml,pickle}] [--hp-exit]

optional arguments:
 -h, --help show this help message and exit
 --weight-decay WEIGHT_DECAY
 --hp-save HP_SAVE Save hyperparameters to a file. The hyperparameters
 are saved after processing of all other options
 --hp-load HP_LOAD Load hyperparameters from a file. The hyperparameters
 are loaded before any other options are processed
 --hp-list [{detail,yaml}]
 List all available hyperparameters. If `--hp-list
 detail` is specified, a verbose table will be print
 --hp-serial-format {auto,yaml,pickle}
 Format of the saved config file. Defaults to auto. Can
 be set to override auto file type deduction.
 --hp-exit process all hpargparse actions and quit

(Example taken from hpargparse [https://github.com/megvii-research/hpargparse])

We are now both distributed (write anywhere) and centralized (manage them as a whole).

Our design is inspired by the underscore
function [https://www.gnu.org/software/gettext/manual/html_node/Mark-Keywords.html]
commonly used in gettext [https://www.gnu.org/software/gettext/] in software
translation. We deem “hyperparameters” as slots of text to be translated,
while different hyperparameter values correspond to different “language” of the
same text.

We achieve the above things by parsing your source code statically and extract
where and how you are defining your hyperparameters. It follows the thoughts
of Code as Data [https://en.wikipedia.org/wiki/Code_as_data].

Also, expression evaluation in hpman is quite safe as we are using
ast.literal_eval.

Features

Arbitrary Imports

Hyperparameter managers are the most important objects of hpman. We are
using from hpman.m import _ throughout the tutorial, as well as recommend
using underscore (“_”, courtesy of
gettext [https://www.gnu.org/software/gettext/]) as the name of imports in
practice, but you can use anything name you want.

The hpman.m module is configured to allow arbitrary imports. Whatever you
import will always be an object of hyperparameter manager and works the same as
“_”:

from hpman.m import _, hpm, hp, ddd, abc, hello
ddd('a', 1)
abc('a', 2)
_('hello', 3)

Hyperparameter managers imported by different names work independently and work
in parallel. Imports of the same name are cached in the sense that, imports of
the same name in the same process will return always the same object.

There are caveats:

	Assignment of these imported objects to variables will not work in static
parsing (will be addressed later), but works at runtime (if you skipped
parsing stage). e.g.:

XXX: BAD EXAMPLE
from hpman.m import _
hello = _ # this breaks the rule
hello('a', 1) # <-- hpman will not be aware of this 'a' hyperparameter.

	Variables share the same name with hpman.m imports will be statically
parsed by hpman, but will not work as expected at runtime. e.g.:

def func(*args, **kargs):
 pass

_ = func

("a", 1) # <-- hpman can do nothing with "" at runtime

from hpman.m import _

print(_.parse_file(__file__).get_values())
Will output "{'a': 1}", which is a "false positive" of hyperparameter
occurrence.

Define Hyperparameters

The most basic (and the most frequently used) function of hpman is to define a
hyperparameter.

from hpman.m import _

def training_loop():
 # training settings
 batch_size = _('batch_size', 128)

 # first use of `num_layer` is recommend to come with default value
 print('num_layers = {}'.format(_('num_layers', 50)))

 # use it directly without storing the values
 if _('use_resnet', True):
 # second use of `num_layer` should not provide default value
 for i in range(_('num_layers')):
 pass

There are a few caveats:

	Among all the occurrence of the same hyperparameter, one and only one
occurrence should come with a default value. Nonetheless, which one has the
default value does not matter (you can surely first use, then define the
default value in later occurrence).

	The name of the hyperparameter must be a literal string.

	The value of the hyperparameter can be an arbitrary object (variable,
lambda, string, whatever), but it is highly recommended to use only
literal values, which is precisely defined by what ast.literal_eval
function accepts. It not only makes the serialization of hyperparameters in
downstream frameworks (such as hpargparse) easier but also improves the
interoperability of hyperparameter settings among different programming
languages and frameworks. The readability of dumped hyperparameters will be
more readable as well.

Static Parsing

We employ static parsing to retrieve information on where and how you are using
the hyperparameters in your source codes. It is employed by _.parse_file and
_.parse_source.

	_.parse_file accepts file paths, directory names, or a list of both. It
internally calls _.parse_source.

	_.parse_source accepts only a piece of source code string.

Examples:

_.parse_file(__file__)
_.parse_file('main.py')
_.parse_file('library_dir')
_.parse_file(['main.py', 'library_dir'])

_.parse_source('_("a", 1)')

Parsing is done using the ast module provided in the python standard library.
We match all function calls with required syntax to detect proper calls to
hyperparameter manager.

Runtime Value Getter/Setter

Value of a hyperparameter can be retrieved by two ways in runtime:

	use __call__ syntax: _('varname')

	use dedicated function: _.get_value('varname')

A dict of all hyperparameters can be retrieved by _.get_values()

Setting a hyperparameter can only be done with

_.set_value('varname', value)

Hints

Hints is intended to provide a mechanism for extending hpman.

It provides an interface to store and retrieve arbitrary information provided
at hyperparameter definition.
Downstream libraries and frameworks could utilize this provided information to
better serve its purpose.

For example, say we would like to create an argparse interface for setting
hyperparameters from the command line, a user could write something like

_('optimizer', 'adam', choices=['adam', 'sgd'])

in their codebase, and the entry point of the program, we could
retrieve this information and provide better argparse options:

File: hints_example.py
from hpman.m import _
from hpman.hpm_db import L

import argparse

_('optimizer', 'adam', choices=['adam', 'sgd'])

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 _.parse_file(__file__)
 occurrences = _.db.select(lambda row: row.name == 'optimizer')
 oc = [
 oc
 for oc in occurrences
 if oc['hints'] is not None
][0]
 choices = oc['hints']['choices']
 value = oc['value']

 parser.add_argument('--optimizer', default=value, choices=choices)
 args = parser.parse_args()

 print('optimizer: {}'.format(args.optimizer))

usecase is as follows:

$ python3 hints_example.py
optimizer: adam
$ python3 hints_example.py -h
usage: hints_example.py [-h] [--optimizer {adam,sgd}]

optional arguments:
 -h, --help show this help message and exit
 --optimizer {adam,sgd}
$ python3 hints_example.py --optimizer sgd
optimizer: sgd
$ python3 hints_example.py --optimizer rmsprop
usage: hints_example.py [-h] [--optimizer {adam,sgd}]
hints_example.py: error: argument --optimizer: invalid choice: 'rmsprop' (choose from 'adam', 'sgd')

The example can be found at examples/02-hints

Best Practices

It is advised that

	DO use hpman when global hyperparameters are needed (e.g., config.{py,yml,json}). hpman can substitute a global config file theoretically.

	DO NOT use hpman in python libraries share among projects, unless you fully aware what the consequences are.

Development

	Install requirements:

python3 -m pip install -r requirements.dev.txt

	Activate git commit template

git config commit.template .git-commit-template.txt

	Install pre-commit hook

pre-commit install

	To format your source code

make format

	To check the coding style

make style-check

	To run the tests

make test

CAVEAT

This project is still in its early stage. API may subject to radical changes
(until version 1.0.0).

Indices and tables

	Index

	Module Index

	Search Page

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to hpman’s documentation!

_static/down.png

_static/comment.png

_images/hpman-logo.png

 Skip to content

 megvii-research
 /
 hpman

 Sign up

 		

 Why GitHub?

 Features →

 		Code review

 		Project management

 		Integrations

 		Actions

 		Packages

 		Security

 		Team management

 		Hosting

 		Customer stories →

 		Security →

 		
 Team

 		
 Enterprise

 		

 Explore

 		Explore GitHub →

 Learn & contribute

 		Topics

 		Collections

 		Trending

 		Learning Lab

 		Open source guides

 Connect with others

 		Events

 		Community forum

 		GitHub Education

 		
 Marketplace

 		

 Pricing

 Plans →

 		Compare plans

 		Contact Sales

 		Nonprofit →

 		Education →

 [image:]

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in

 Sign up

 megvii-research

 /

 hpman

 		

 Watch

 4

 		

 Star

 25

 		

 Fork

 2

 		

 Code

 		

 Issues
 6

 		

 Pull requests
 2

 		

 Actions

 		

 Projects
 1

 		

 Security

 		

 Insights

 Code

 Issues
 6

 Pull requests
 2

 Projects
 1

 Actions

 Security

 Pulse

 Permalink

 Dismiss

 Join GitHub today

 GitHub is home to over 50 million developers working together to host and review code, manage projects, and build software together.

 Sign up

 Branch:
 master

 Find file

 Copy path

 hpman/assets/hpman-logo.png

 Find file

 Copy path

 [image: @zxytim]
 zxytim

 new logo for hpman

 c03e2fe
 Sep 16, 2019

 1 contributor

 Users who have contributed to this file

 17.4 KB

 Download
 History

 [image: hpman-logo.png]

 Go

 		© 2020 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

